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HAWT:  Aerodynamic Noise Sources 

• Various aero noise sources: 
– Turbulence interaction with blades 

– Unsteady force  noise  

• Focus on inflow turbulence here 
– Important for low-frequency noise 
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Motivation 

• Lighthill’s acoustic analogy – unsteady force   noise source 

 

 

• Sources of inflow turbulence 
– Atmospheric:  buoyancy & shear 

– Turbine wakes:  shear 

 

• Role of wake turbulence in 
producing noise is unclear 
– possibly pronounced under stable 

conditions 

– potential for OAM (other amplitude 
modulation) 
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Envisioned Prediction Approach 

 

• SOWFA calculations 
– Sample wake (+atmospheric) turbulence statistics 
– Prescribe as inflow BC to aeroacoustic simulation 

 
• Simulate outboard section of turbine blade  

– Ignore rotational effects, assume periodicity in span 
– Prescribe inflow turbulence (synthesized?) 
– LES + model  noise resulting from inflow turbulence-blade interaction 
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Aero:  LES (SOWFA) 
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Inflow (turbulent):  
from SOWFA + 
synthesis 

Acoustics:  LES (pisoFoam) 



Simplified (model) Problems for now 
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• I:  Farm Aero 
– SOWFA calculations … no ABL 

– Time history probes at hub height 

 Turbulence length scale + intensity 

–  Lowson/Amiet noise model  far-field noise 

 

• II:  Rod-Airfoil interaction 
– Rod wake simulates upstream wake turbulence 

– Compute airfoil response (loads/noise) using LES 

– Acoustics analogies  far-field noise 



I:  FARM AERO (SOWFA) 
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Hypothetical Wind Farm 

• Wind farm layout   
– Turbines under:  no-wake,  partial-wake, & full-wake  

 

 

 

 

 

 

 

 

 

 

• Aero calculations using SOWFA 

• Wake turbulence data extracted at hub height 
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Aerodynamic Results 

• SOWFA:   pisoFoam + actuator line model 

• At the moment:  No ABL  first row of turbines have no 
inflow turbulence 
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Iso-vorticity surfaces Vorticity magnitude contours 



Wake Turbulence Information 

• Time history (streamwise velocity component) 
 

• Auto-correlation:                                                               ; where 
 

• Integral time scale:  
 

• Integral length scale … use Taylor’s frozen turbulence hypothesis:    
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Inflow Turbulence Noise Model 

• Due to Lowson … extension of Amiet’s theory 

 

 

 

 
 

 

• Correction for low frequencies 

 

 

 

     … S2 is the compressible Sears function 

SOWE II, 2014 10 Agrawal et al. (Iowa State University) 



Noise Results (preliminary) 
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• Wake turbulence:   TI ~ 5-10%;    length scale ~ 2-10 m 

• Lowson’s model (in FAST) used to assess noise at IEC std. observer location 

• Noise predictions for a few representative values of TI & length scales 

 

 

 

 

 

 

 

 

 

• Perceptible impact on low-frequency noise 

• However, the question of relative importance of wake/atmospheric 
turbulence remains 
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II:  ROD-AIRFOIL  
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Model Problem:  Rod-Airfoil 

• Rod  turbulence generator (mimic inflow turbulence) 

• Wake-airfoil interaction  noise 

• Rod wake comprises of: 

– Quasi-periodic vortex shedding  tone noise 

– Vortex structure breakdown  turbulence  broadband noise 
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Rod Airfoil Problem Setup 

• Experiment by Jacob et al. [1]  

 

• Setup: 
– Rod airfoil in tandem 

– Airfoil (NACA 0012; c = 0. 1 m) 

– Rod (dia, d = 0.01 m) 

– Separation, l = 0.1 m 

 

• Flow Reynolds number: 

– Red = 48,000 (Rec=480,000) 

 

• Rod (cylinder) vortex shedding 
– Wake shedding St = 0.19 
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Large Eddy Simulations 

• Two flow solvers benchmarked against experiments 
– Compressible flow solver Charles by Cascade Tech. 

– Incompressible flow solver pisoFoam from OpenFoam 
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• Grid refined to resolve 
– Rod & airfoil boundary layers 

– Gap region between rod and 
airfoil 

 

• Flow initialized by 
interpolating a 2-D solution 

 



Flow Comparisons 

• Streamwise velocity in wake 
– at x/c = -0.255 

– Mean and fluctuation (rms) 
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𝑢  𝑢𝑟𝑚𝑠 



Near Field Velocity Spectral Density, Suu(ω) 
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PSD: using Wiener-Khinchin theorem: 



Far-field Noise Prediction 

Acoustic analogies to predict far-field noise 

 

• Compressible flow data:   
– Ffowcs Williams-Hawkings analogy  (ignore volume integral) 

 

 

 

 

• Incompressible flow data (no density perturbation):   
– Amiet’s theory 

– Lighthill stress tensor + scattering problem 
• Euler equations, Boundary value, etc. 
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Amiet’s Theory 

• Subtract surface pressure:  pressure – suction sides to 
calculate loading  Delta P 

 

• Compute cross PSD of loading on airfoil camber surface 

 

 

• Convolve cross PSD with free-space Green’s function (of 
convected wave eq.) to get far-field PSD 
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Far Field Noise Power Spectral Density, Spp(ω) 

• At 18.5c from mid point of leading edge along lift direction 

• Charles: Ffowcs-Williams Hawkings Analogy & Amiet’s Formula 

• Different span in Exp. and CFD (3:1) 

– For one-to-one comparison (if Lsim > Lcorr): 

 

 

SOWE II, 2014 20 Agrawal et al. (Iowa State University) 



Far Field Noise – Peak Directivity 

• Noise measurement data available on a circular arc (r = 18.5 c) 

• Dipole directivity (as expected)  

• Convective amplification – increased power upstream 
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Conclusions and Future Work 

Conclusions: 

– Progressing towards assessing impact of wake turbulence 
on turbine noise 

– Model problems solved to assess prediction accuracy 

– Rod-airfoil problem  reasonable accuracy in near- and 
far-field spectra 

 

Future Work: 

– Wind farm calculations with ABL inflow (stable conds) 

– LES calculation of part-span blade with inflow turbulence 
from SOWFA calculations 
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